Definition 1 Those terms are 'the same' or 'coincident' of which either can be substituted for the other whenever we please without loss of truth
Definition 2
*Proposition 1
Those terms are 'different' which are not the same.
$A=B$, then $B=A$
*Proposition $2 \quad$ If $A \neq B$ then, $B \neq A$.
*Proposition 3 If $A=B$ and $B=C$, then $A=C$.
*Corollary If $A=B$ and $B=C$ and $C=D$, then $A=D$.
*Proposition $4 \quad$ If $A=B$ and $B \neq C$, then $A \neq C$.
Definition 3 That A 'is in' L or, that L 'contains' A, is the same as that L is assumed to be coincident with several terms taken together, among which is A.
Definition 4 All those terms in which there is whatever is in L will together be called 'components' in respect of L, which is 'composed' or 'constituted'.
Definition $5 \quad$ I call those terms 'subalternants' of which one is in the other.
Definition $6 \quad$ I call those terms 'disparate' of which neither is in the other.
Axiom 1
Postulate 1

$$
B \oplus N=N \oplus B
$$

Given any term, some term can be assumed which is different from it and, if one pleases, which is disparate.
Postulate $2 \quad$ Any plurality of terms, such as A and B, can be taken together to compose one term, $A \oplus B$, or L.
Axiom $2 \quad A \oplus A=A$
*Proposition 5 If A is in B, and $A=C$, then C is in B.
*Proposition 6 If C is in B and $A=B$, then C is in A.
Proposition $7 \quad A$ is in A.
Proposition $8 \quad A$ is in B, if $A=B$.
${ }^{*}$ Proposition 9 If $A=B$, then $A \oplus C=B \oplus C$.
*Proposition 10 If $A=L$ and $B=M$, then $A \oplus B=L \oplus M$.
*Proposition 11 If $A=L$ and $B=M$ and $C=N$, then $A \oplus B \oplus C=L \oplus M \oplus N$.
Proposition 12 If B is in L, then $A \oplus B$ will be in $A \oplus L$.
Proposition 13 If $L \oplus B=L$, then B will be in L.
Proposition $14 \quad$ If B is in L, then $L \oplus B=L$.
Proposition 15 If A is in B and B is in C, then A is in C.
Corollary If $A \oplus N$ is in B, then N is in B.
Proposition $16 \quad$ If A is in B and B is in C and C is in D, then A is in D.
Proposition $17 \quad$ If A is in B and B is in A, then $A=B$.
Proposition $18 \quad$ If A is in L and B is in L, then $A \oplus B$ will be in L.
Proposition 19 If A is in L and B is in L and C is in L, then $A \oplus B \oplus C$ is in L.
Proposition $20 \quad$ If A is in M and B is in N, then $A \oplus B$ will be in $M \oplus N$.
Proposition 21 If A is in M and B is in N and C is in P, then $A \oplus B \oplus C$ is in $M \oplus N \oplus P$.
Proposition 22 Given two disparate terms, A and B, to find a third term C which is different them and which together with them makes up the subalternants $A \oplus C$ and $B \oplus C$: that is, although neither of A and B is in the other, yet one of $A \oplus C$ and $B \oplus C$ is in the other.
Proposition 23 Given two disparate terms, A and B, to find a third term C different from them such that $A \oplus B=A \oplus C$.
Proposition 24. To find several terms which are different, each to each, as many as shall be desired, such tghat from them there cannot be composed a term which is new, i.e., different from any of them.

