- Definition 1 Those terms are 'the same' or 'coincident' of which either can be substituted for the other whenever we please without loss of truth
- Definition 2 Those terms are 'different' which are not the same.
- *Proposition 1 If A = B, then B = A.
- *Proposition 2 If $A \neq B$ then, $B \neq A$.
- *Proposition 3 If A = B and B = C, then A = C.
- *Corollary If A = B and B = C and C = D, then A = D.
- *Proposition 4 If A = B and $B \neq C$, then $A \neq C$.
- Definition 3 That A 'is in' L or, that L 'contains' A, is the same as that L is assumed to be coincident with several terms taken together, among which is A.
- Definition 4 All those terms in which there is whatever is in L will together be called 'components' in respect of L, which is 'composed' or 'constituted'.
- Definition 5 I call those terms 'subalternants' of which one is in the other.
- Definition 6 I call those terms 'disparate' of which neither is in the other.
- Axiom 1 $B \oplus N = N \oplus B$
- Postulate 1 Given any term, some term can be assumed which is different from it and, if one pleases, which is disparate.
- Postulate 2 Any plurality of terms, such as A and B, can be taken together to compose one term, $A \oplus B$, or L.
- Axiom 2 $A \oplus A = A$
- *Proposition 5 If A is in B, and A = C, then C is in B.
- *Proposition 6 If C is in B and A = B, then C is in A.
- Proposition 7 A is in A.
- Proposition 8 A is in B, if A = B.
- *Proposition 9 If A = B, then $A \oplus C = B \oplus C$.
- *Proposition 10 If A = L and B = M, then $A \oplus B = L \oplus M$.
- *Proposition 11 If A = L and B = M and C = N, then $A \oplus B \oplus C = L \oplus M \oplus N$.
- Proposition 12 If B is in L, then $A \oplus B$ will be in $A \oplus L$.
- Proposition 13 If $L \oplus B = L$, then B will be in L.
- Proposition 14 If B is in L, then $L \oplus B = L$.
- Proposition 15 If A is in B and B is in C, then A is in C.
- Corollary If $A \oplus N$ is in B, then N is in B.
- Proposition 16 If A is in B and B is in C and C is in D, then A is in D.
- Proposition 17 If A is in B and B is in A, then A = B.
- Proposition 18 If A is in L and B is in L, then $A \oplus B$ will be in L.
- Proposition 19 If A is in L and B is in L and C is in L, then $A \oplus B \oplus C$ is in L.
- Proposition 20 If A is in M and B is in N, then $A \oplus B$ will be in $M \oplus N$.
- Proposition 21 If A is in M and B is in N and C is in P, then $A \oplus B \oplus C$ is in $M \oplus N \oplus P$.
- Proposition 22 Given two disparate terms, A and B, to find a third term C which is different them and which together with them makes up the subalternants $A \oplus C$ and $B \oplus C$: that is, although neither of A and B is in the other, yet one of $A \oplus C$ and $B \oplus C$ is in the other.
- Proposition 23 Given two disparate terms, A and B, to find a third term C different from them such that $A \oplus B = A \oplus C$.
- Proposition 24. To find several terms which are different, each to each, as many as shall be desired, such tghat from them there cannot be composed a term which is new, i.e., different from any of them.